skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hua, Changchun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article investigates the ‐optimal estimation problem of a class of linear system with delays in states, disturbance input, and outputs. The estimator uses an extended Luenberger estimator format which estimates both the present and history states. The estimator is designed using an equivalent Partial Integral Equation (PIE) representation of the coupled nominal system. The advantage of the resulting PIE representation is compact and delay free—obviating the need for commonly used bounding technique such as integral inequalities which typically introduces conservatism into the resulting optimization problem. The ‐optimal estimator synthesis problem is then reformulated as a Linear Partial Inequality (LPI)—a form of convex optimization using operator variables and inequlities. Such LPI‐based optimization problems can be solved using semidefinite programming via the PIETOOLS toolbox in Matlab. Compared with previous work, the proposed method simplifies the analysis and computation process and resulting in observers which are non‐conservtism to 4 decimal places when compared with Pad‐based ODE observer design methodologies. Numerical examples and simulation results are given to illustrate the effectiveness and scalability of the proposed approach. 
    more » « less
  2. Inspired by the recently proposed Partial Integral Equality(PIE) representation for linear delay systems, this paper proposes a fuzzy-PIE representation for T-S fuzzy systems with delays for the first time. Inspired by the free-weighting matrix technique, this paper introduces the free-weighting Partial Integral (PI) operators. Based on the novel representation and free-weighting PI operators, the stability issue is investigated for the T-S fuzzy systems with delays. The corresponding conditions are given as Linear Partial Inequality (LPI) and can be solved by the MATLAB toolbox PIETOOLS. Compared with the existing results, our method has no need of the bounding technique and a large amount of matrix operation. The numerical examples show the superiority of our method. This paper adds to the expanding field of LPI approach to fuzzy systems with delays. 
    more » « less